Properties

Label 5.2e8_5e8.12t183.2
Dimension 5
Group $S_6$
Conductor $ 2^{8} \cdot 5^{8}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$100000000= 2^{8} \cdot 5^{8} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 5 x^{4} - 5 x^{3} + 10 x^{2} - 4 x - 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T183
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 45 a + 25 + \left(3 a + 23\right)\cdot 47 + \left(29 a + 13\right)\cdot 47^{2} + \left(7 a + 1\right)\cdot 47^{3} + \left(24 a + 25\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 + 8\cdot 47 + 45\cdot 47^{2} + 9\cdot 47^{3} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 21 + \left(43 a + 33\right)\cdot 47 + \left(17 a + 20\right)\cdot 47^{2} + \left(39 a + 34\right)\cdot 47^{3} + \left(22 a + 18\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 15 + 38\cdot 47 + 20\cdot 47^{2} + 41\cdot 47^{3} + 12\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 7 + \left(18 a + 4\right)\cdot 47 + \left(39 a + 37\right)\cdot 47^{2} + \left(29 a + 16\right)\cdot 47^{3} + \left(44 a + 12\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 40 a + 21 + \left(28 a + 33\right)\cdot 47 + \left(7 a + 3\right)\cdot 47^{2} + \left(17 a + 37\right)\cdot 47^{3} + \left(2 a + 24\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)(5,6)$ $-3$
$15$ $2$ $(1,2)$ $1$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $2$
$40$ $3$ $(1,2,3)$ $-1$
$90$ $4$ $(1,2,3,4)(5,6)$ $-1$
$90$ $4$ $(1,2,3,4)$ $-1$
$144$ $5$ $(1,2,3,4,5)$ $0$
$120$ $6$ $(1,2,3,4,5,6)$ $0$
$120$ $6$ $(1,2,3)(4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.