Properties

Label 5.2e8_41e4.6t12.1
Dimension 5
Group $A_5$
Conductor $ 2^{8} \cdot 41^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$A_5$
Conductor:$723394816= 2^{8} \cdot 41^{4} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + 8 x^{3} - 12 x^{2} + 17 x - 14 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,5)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 397 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 66 + 125\cdot 397 + 103\cdot 397^{2} + 244\cdot 397^{3} + 31\cdot 397^{4} +O\left(397^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 209 + 189\cdot 397 + 133\cdot 397^{2} + 339\cdot 397^{3} + 207\cdot 397^{4} +O\left(397^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 247 + 339\cdot 397 + 276\cdot 397^{2} + 291\cdot 397^{3} + 42\cdot 397^{4} +O\left(397^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 277 + 145\cdot 397 + 196\cdot 397^{2} + 258\cdot 397^{3} + 247\cdot 397^{4} +O\left(397^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 394 + 390\cdot 397 + 83\cdot 397^{2} + 57\cdot 397^{3} + 264\cdot 397^{4} +O\left(397^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)$ $1$
$20$ $3$ $(1,2,3)$ $-1$
$12$ $5$ $(1,2,3,4,5)$ $0$
$12$ $5$ $(1,3,4,5,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.