Properties

Label 5.2e6_7e2_11e4.6t12.1
Dimension 5
Group $A_5$
Conductor $ 2^{6} \cdot 7^{2} \cdot 11^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$A_5$
Conductor:$45914176= 2^{6} \cdot 7^{2} \cdot 11^{4} $
Artin number field: Splitting field of $f= x^{5} - x^{4} + 4 x^{3} - 8 x^{2} + x + 7 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,5)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 503 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 125 + 151\cdot 503 + 114\cdot 503^{2} + 427\cdot 503^{3} + 483\cdot 503^{4} +O\left(503^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 162 + 31\cdot 503 + 202\cdot 503^{2} + 473\cdot 503^{3} + 305\cdot 503^{4} +O\left(503^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 190 + 102\cdot 503 + 88\cdot 503^{2} + 398\cdot 503^{3} + 441\cdot 503^{4} +O\left(503^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 244 + 130\cdot 503 + 186\cdot 503^{2} + 54\cdot 503^{3} + 435\cdot 503^{4} +O\left(503^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 286 + 87\cdot 503 + 415\cdot 503^{2} + 155\cdot 503^{3} + 345\cdot 503^{4} +O\left(503^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)$ $1$
$20$ $3$ $(1,2,3)$ $-1$
$12$ $5$ $(1,2,3,4,5)$ $0$
$12$ $5$ $(1,3,4,5,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.