Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 379 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 114 + 121\cdot 379 + 351\cdot 379^{2} + 63\cdot 379^{3} + 106\cdot 379^{4} +O\left(379^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 173 + 190\cdot 379 + 278\cdot 379^{2} + 342\cdot 379^{3} + 238\cdot 379^{4} +O\left(379^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 258 + 267\cdot 379 + 365\cdot 379^{2} + 232\cdot 379^{3} + 255\cdot 379^{4} +O\left(379^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 263 + 316\cdot 379 + 262\cdot 379^{2} + 374\cdot 379^{3} + 125\cdot 379^{4} +O\left(379^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 329 + 240\cdot 379 + 257\cdot 379^{2} + 122\cdot 379^{3} + 31\cdot 379^{4} +O\left(379^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2,3)$ |
| $(3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$5$ |
| $15$ |
$2$ |
$(1,2)(3,4)$ |
$1$ |
| $20$ |
$3$ |
$(1,2,3)$ |
$-1$ |
| $12$ |
$5$ |
$(1,2,3,4,5)$ |
$0$ |
| $12$ |
$5$ |
$(1,3,4,5,2)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.