Properties

Label 5.2e6_67e4.6t12.1c1
Dimension 5
Group $A_5$
Conductor $ 2^{6} \cdot 67^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$A_5$
Conductor:$1289671744= 2^{6} \cdot 67^{4} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - x^{3} + 7 x^{2} - 9 x + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,5)$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 263 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 53 + 203\cdot 263 + 22\cdot 263^{2} + 129\cdot 263^{3} + 229\cdot 263^{4} +O\left(263^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 57 + 137\cdot 263 + 38\cdot 263^{2} + 116\cdot 263^{3} + 57\cdot 263^{4} +O\left(263^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 80 + 215\cdot 263 + 78\cdot 263^{2} + 82\cdot 263^{3} + 224\cdot 263^{4} +O\left(263^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 99 + 211\cdot 263 + 143\cdot 263^{2} + 253\cdot 263^{3} + 128\cdot 263^{4} +O\left(263^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 238 + 21\cdot 263 + 242\cdot 263^{2} + 207\cdot 263^{3} + 148\cdot 263^{4} +O\left(263^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$12$$5$$(1,2,3,4,5)$$0$
$12$$5$$(1,3,4,5,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.