Properties

Label 5.2e6_5e6_7e2.10t13.5
Dimension 5
Group $\PGL(2,5)$
Conductor $ 2^{6} \cdot 5^{6} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$\PGL(2,5)$
Conductor:$49000000= 2^{6} \cdot 5^{6} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{6} - 10 x^{3} - 4 x + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{2} + 78 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 27 + 73\cdot 79 + 47\cdot 79^{2} + 28\cdot 79^{3} + 7\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 6 + 44\cdot 79 + 2\cdot 79^{2} + 78\cdot 79^{3} + 4\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 27 a + 3 + \left(67 a + 48\right)\cdot 79 + \left(55 a + 36\right)\cdot 79^{2} + \left(23 a + 40\right)\cdot 79^{3} + \left(73 a + 78\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 52 a + 30 + \left(11 a + 9\right)\cdot 79 + \left(23 a + 25\right)\cdot 79^{2} + \left(55 a + 8\right)\cdot 79^{3} + \left(5 a + 49\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 40 a + 26 + \left(56 a + 62\right)\cdot 79 + \left(20 a + 40\right)\cdot 79^{2} + \left(47 a + 27\right)\cdot 79^{3} + \left(27 a + 58\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 39 a + 66 + \left(22 a + 78\right)\cdot 79 + \left(58 a + 4\right)\cdot 79^{2} + \left(31 a + 54\right)\cdot 79^{3} + \left(51 a + 38\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3,4,6,5)$
$(1,3)(2,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,3)(2,4)(5,6)$ $1$
$15$ $2$ $(1,5)(4,6)$ $1$
$20$ $3$ $(1,3,6)(2,4,5)$ $-1$
$30$ $4$ $(1,6,5,4)$ $-1$
$24$ $5$ $(1,4,3,2,6)$ $0$
$20$ $6$ $(1,2,3,4,6,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.