Properties

Label 5.2e6_5e5_7e2.6t14.1
Dimension 5
Group $S_5$
Conductor $ 2^{6} \cdot 5^{5} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$9800000= 2^{6} \cdot 5^{5} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{5} - 40 x^{2} + 20 x - 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 3 + 15\cdot 73 + 46\cdot 73^{2} + 52\cdot 73^{3} + 10\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 15 + 27\cdot 73 + 31\cdot 73^{2} + 58\cdot 73^{3} + 30\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 70 a + 50 + \left(68 a + 59\right)\cdot 73 + \left(8 a + 33\right)\cdot 73^{2} + \left(54 a + 15\right)\cdot 73^{3} + \left(54 a + 34\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 3 a + 41 + \left(4 a + 50\right)\cdot 73 + \left(64 a + 64\right)\cdot 73^{2} + \left(18 a + 22\right)\cdot 73^{3} + \left(18 a + 71\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 37 + 66\cdot 73 + 42\cdot 73^{2} + 69\cdot 73^{3} + 71\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,2)$ $-1$
$15$ $2$ $(1,2)(3,4)$ $1$
$20$ $3$ $(1,2,3)$ $-1$
$30$ $4$ $(1,2,3,4)$ $1$
$24$ $5$ $(1,2,3,4,5)$ $0$
$20$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.