Properties

Label 5.2e6_5e4_17e4.6t12.1c1
Dimension 5
Group $A_5$
Conductor $ 2^{6} \cdot 5^{4} \cdot 17^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$A_5$
Conductor:$3340840000= 2^{6} \cdot 5^{4} \cdot 17^{4} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - x^{3} - 5 x^{2} + 9 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,5)$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 173 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 38 + 92\cdot 173 + 122\cdot 173^{2} + 130\cdot 173^{3} + 51\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 57 + 110\cdot 173 + 50\cdot 173^{2} + 24\cdot 173^{3} + 162\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 112 + 133\cdot 173 + 152\cdot 173^{2} + 104\cdot 173^{3} + 88\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 152 + 127\cdot 173 + 62\cdot 173^{2} + 131\cdot 173^{3} + 153\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 161 + 54\cdot 173 + 130\cdot 173^{2} + 127\cdot 173^{3} + 62\cdot 173^{4} +O\left(173^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$12$$5$$(1,2,3,4,5)$$0$
$12$$5$$(1,3,4,5,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.