Properties

Label 5.2e6_5e4_11e4.6t12.2c1
Dimension 5
Group $\PSL(2,5)$
Conductor $ 2^{6} \cdot 5^{4} \cdot 11^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$\PSL(2,5)$
Conductor:$585640000= 2^{6} \cdot 5^{4} \cdot 11^{4} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 2 x^{4} - 4 x^{3} + 45 x^{2} - 50 x + 15 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,5)$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 2 + \left(18 a + 2\right)\cdot 19 + \left(10 a + 5\right)\cdot 19^{2} + \left(4 a + 14\right)\cdot 19^{3} + \left(15 a + 10\right)\cdot 19^{4} + \left(10 a + 1\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 13 + 14\cdot 19 + 18\cdot 19^{2} + 2\cdot 19^{3} + 8\cdot 19^{4} + 7\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 14 + 8\cdot 19 + 14\cdot 19^{2} + 19^{3} + 4\cdot 19^{4} + 6\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 4 }$ $=$ $ a + 2 + 8\cdot 19 + \left(13 a + 13\right)\cdot 19^{2} + \left(2 a + 10\right)\cdot 19^{3} + \left(9 a + 12\right)\cdot 19^{4} + \left(13 a + 10\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 18 a + 3 + \left(18 a + 7\right)\cdot 19 + \left(5 a + 7\right)\cdot 19^{2} + 16 a\cdot 19^{3} + 9 a\cdot 19^{4} + \left(5 a + 15\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 15 a + 6 + 16\cdot 19 + \left(8 a + 16\right)\cdot 19^{2} + \left(14 a + 7\right)\cdot 19^{3} + \left(3 a + 2\right)\cdot 19^{4} + \left(8 a + 16\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(5,6)$
$(1,6,3)(2,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$5$
$15$$2$$(1,3)(5,6)$$1$
$20$$3$$(1,6,3)(2,4,5)$$-1$
$12$$5$$(2,4,5,3,6)$$0$
$12$$5$$(2,5,6,4,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.