Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 337 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 58 + 230\cdot 337 + 27\cdot 337^{2} + 118\cdot 337^{3} + 147\cdot 337^{4} +O\left(337^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 94 + 170\cdot 337 + 335\cdot 337^{2} + 55\cdot 337^{3} + 34\cdot 337^{4} +O\left(337^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 98 + 291\cdot 337 + 288\cdot 337^{2} + 320\cdot 337^{3} + 120\cdot 337^{4} +O\left(337^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 166 + 167\cdot 337 + 336\cdot 337^{2} + 293\cdot 337^{3} + 303\cdot 337^{4} +O\left(337^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 258 + 151\cdot 337 + 22\cdot 337^{2} + 222\cdot 337^{3} + 67\cdot 337^{4} +O\left(337^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2,3)$ |
| $(3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $5$ |
| $15$ | $2$ | $(1,2)(3,4)$ | $1$ |
| $20$ | $3$ | $(1,2,3)$ | $-1$ |
| $12$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $12$ | $5$ | $(1,3,4,5,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.