Properties

Label 5.2e6_5e2_41e2.6t12.1c1
Dimension 5
Group $A_5$
Conductor $ 2^{6} \cdot 5^{2} \cdot 41^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$A_5$
Conductor:$2689600= 2^{6} \cdot 5^{2} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 2 x^{3} - 22 x^{2} - 7 x - 33 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,5)$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 521 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 20 + 449\cdot 521 + 265\cdot 521^{2} + 394\cdot 521^{3} + 354\cdot 521^{4} +O\left(521^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 66 + 273\cdot 521 + 76\cdot 521^{2} + 123\cdot 521^{3} + 480\cdot 521^{4} +O\left(521^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 284 + 355\cdot 521 + 142\cdot 521^{2} + 404\cdot 521^{3} + 191\cdot 521^{4} +O\left(521^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 299 + 190\cdot 521 + 288\cdot 521^{2} + 312\cdot 521^{3} + 264\cdot 521^{4} +O\left(521^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 374 + 294\cdot 521 + 268\cdot 521^{2} + 328\cdot 521^{3} + 271\cdot 521^{4} +O\left(521^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$12$$5$$(1,2,3,4,5)$$0$
$12$$5$$(1,3,4,5,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.