Properties

Label 5.2e6_3e4_7e4.6t16.1
Dimension 5
Group $S_6$
Conductor $ 2^{6} \cdot 3^{4} \cdot 7^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$12446784= 2^{6} \cdot 3^{4} \cdot 7^{4} $
Artin number field: Splitting field of $f= x^{6} - 9 x^{4} - 2 x^{3} + 9 x^{2} + 6 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_6$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 157 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 157 }$: $ x^{2} + 152 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 27 a + 73 + \left(57 a + 146\right)\cdot 157 + \left(57 a + 39\right)\cdot 157^{2} + \left(60 a + 47\right)\cdot 157^{3} + \left(35 a + 61\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 119 a + 73 + \left(87 a + 134\right)\cdot 157 + \left(66 a + 54\right)\cdot 157^{2} + 10\cdot 157^{3} + \left(10 a + 125\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 38 a + 40 + \left(69 a + 140\right)\cdot 157 + \left(90 a + 142\right)\cdot 157^{2} + \left(156 a + 102\right)\cdot 157^{3} + \left(146 a + 17\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 131 + 134\cdot 157 + 50\cdot 157^{2} + 103\cdot 157^{3} + 78\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 130 a + 51 + \left(99 a + 91\right)\cdot 157 + \left(99 a + 112\right)\cdot 157^{2} + \left(96 a + 134\right)\cdot 157^{3} + \left(121 a + 20\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 103 + 137\cdot 157 + 69\cdot 157^{2} + 72\cdot 157^{3} + 10\cdot 157^{4} +O\left(157^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)(5,6)$ $3$
$15$ $2$ $(1,2)$ $-1$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $2$
$40$ $3$ $(1,2,3)$ $-1$
$90$ $4$ $(1,2,3,4)(5,6)$ $-1$
$90$ $4$ $(1,2,3,4)$ $1$
$144$ $5$ $(1,2,3,4,5)$ $0$
$120$ $6$ $(1,2,3,4,5,6)$ $0$
$120$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.