Properties

Label 5.2e6_3e4_79e2.10t13.2c1
Dimension 5
Group $S_5$
Conductor $ 2^{6} \cdot 3^{4} \cdot 79^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$32353344= 2^{6} \cdot 3^{4} \cdot 79^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} - 2 x^{2} - 5 x + 12 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 139 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 45 + 107\cdot 139 + 98\cdot 139^{2} + 96\cdot 139^{3} + 71\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 61 + 92\cdot 139 + 139^{2} + 117\cdot 139^{3} + 87\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 65 + 6\cdot 139 + 34\cdot 139^{2} + 88\cdot 139^{3} + 106\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 122 + 133\cdot 139 + 47\cdot 139^{2} + 45\cdot 139^{3} + 57\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 126 + 76\cdot 139 + 95\cdot 139^{2} + 69\cdot 139^{3} + 93\cdot 139^{4} +O\left(139^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)$$1$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$30$$4$$(1,2,3,4)$$-1$
$24$$5$$(1,2,3,4,5)$$0$
$20$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.