Properties

Label 5.2e6_3e4_5e6.10t13.8c1
Dimension 5
Group $\PGL(2,5)$
Conductor $ 2^{6} \cdot 3^{4} \cdot 5^{6}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$\PGL(2,5)$
Conductor:$81000000= 2^{6} \cdot 3^{4} \cdot 5^{6} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 6 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 89 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 89 }$: $ x^{2} + 82 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 27 + 84\cdot 89 + 4\cdot 89^{2} + 56\cdot 89^{3} + 86\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 68 a + 36 + \left(34 a + 42\right)\cdot 89 + \left(79 a + 39\right)\cdot 89^{2} + \left(11 a + 5\right)\cdot 89^{3} + \left(52 a + 7\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 60 a + 18 + \left(16 a + 8\right)\cdot 89 + \left(66 a + 73\right)\cdot 89^{2} + \left(54 a + 60\right)\cdot 89^{3} + \left(47 a + 5\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 39 + 27\cdot 89 + 48\cdot 89^{2} + 24\cdot 89^{3} + 57\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 67 + \left(54 a + 39\right)\cdot 89 + \left(9 a + 26\right)\cdot 89^{2} + \left(77 a + 9\right)\cdot 89^{3} + \left(36 a + 4\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 29 a + 82 + \left(72 a + 64\right)\cdot 89 + \left(22 a + 74\right)\cdot 89^{2} + \left(34 a + 21\right)\cdot 89^{3} + \left(41 a + 17\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,2,4,5,6)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)(3,6)(4,5)$$1$
$15$$2$$(1,4)(2,5)$$1$
$20$$3$$(1,5,2)(3,6,4)$$-1$
$30$$4$$(2,6,4,5)$$-1$
$24$$5$$(1,4,6,2,3)$$0$
$20$$6$$(1,6,5,4,2,3)$$1$
The blue line marks the conjugacy class containing complex conjugation.