Properties

Label 5.2e6_3e4_5e5.6t14.4
Dimension 5
Group $\PGL(2,5)$
Conductor $ 2^{6} \cdot 3^{4} \cdot 5^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$\PGL(2,5)$
Conductor:$16200000= 2^{6} \cdot 3^{4} \cdot 5^{5} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 5 x^{4} - 5 x^{2} + 8 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ 7 a^{2} + 4 a + 3 + \left(6 a^{2} + 8 a + 5\right)\cdot 11 + \left(6 a^{2} + 4 a + 9\right)\cdot 11^{2} + \left(a + 9\right)\cdot 11^{3} + \left(3 a^{2} + 8 a + 1\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 2 }$ $=$ $ a^{2} + 5 a + 6 + \left(a + 7\right)\cdot 11 + \left(7 a^{2} + 6 a + 2\right)\cdot 11^{2} + \left(5 a^{2} + 6 a + 9\right)\cdot 11^{3} + \left(5 a^{2} + 8\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 a^{2} + 9 a + 8 + \left(2 a + 4\right)\cdot 11 + \left(8 a^{2} + 2 a + 6\right)\cdot 11^{2} + \left(5 a^{2} + 3 a + 9\right)\cdot 11^{3} + \left(5 a^{2} + 8 a + 5\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 3 a^{2} + 2 a + 5 + \left(4 a^{2} + a + 9\right)\cdot 11 + 8 a^{2}11^{2} + \left(4 a^{2} + 3 a + 8\right)\cdot 11^{3} + \left(2 a^{2} + 2 a + 4\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 2 a^{2} + 4 a + 6 + \left(8 a^{2} + 8 a + 3\right)\cdot 11 + \left(6 a^{2} + 4 a + 8\right)\cdot 11^{2} + \left(2 a^{2} + 10 a + 1\right)\cdot 11^{3} + \left(6 a^{2} + 5 a + 3\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 9 a + 7 + \left(2 a^{2} + 10 a + 2\right)\cdot 11 + \left(7 a^{2} + 3 a + 5\right)\cdot 11^{2} + \left(2 a^{2} + 8 a + 5\right)\cdot 11^{3} + \left(10 a^{2} + 7 a + 8\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,3,5,4,2)$
$(1,6)(2,5)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,6)(2,5)(3,4)$ $-1$
$15$ $2$ $(1,6)(3,5)$ $1$
$20$ $3$ $(1,3,4)(2,6,5)$ $-1$
$30$ $4$ $(1,5,6,3)$ $1$
$24$ $5$ $(2,3,5,4,6)$ $0$
$20$ $6$ $(1,6,3,5,4,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.