Properties

Label 5.2e6_3e4_5e5.6t14.1c1
Dimension 5
Group $S_5$
Conductor $ 2^{6} \cdot 3^{4} \cdot 5^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$16200000= 2^{6} \cdot 3^{4} \cdot 5^{5} $
Artin number field: Splitting field of $f= x^{5} - 30 x - 60 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 17 + 10\cdot 53 + 23\cdot 53^{2} + 44\cdot 53^{3} + 3\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 31 a + 28 + \left(49 a + 16\right)\cdot 53 + \left(49 a + 15\right)\cdot 53^{2} + \left(49 a + 50\right)\cdot 53^{3} + \left(48 a + 26\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 22 a + 46 + \left(3 a + 24\right)\cdot 53 + \left(3 a + 6\right)\cdot 53^{2} + \left(3 a + 41\right)\cdot 53^{3} + \left(4 a + 13\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 5 + 10\cdot 53 + 34\cdot 53^{2} + 23\cdot 53^{3} + 23\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 10 + 44\cdot 53 + 26\cdot 53^{2} + 52\cdot 53^{3} + 37\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)$$-1$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$30$$4$$(1,2,3,4)$$1$
$24$$5$$(1,2,3,4,5)$$0$
$20$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.