Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 137 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 137 }$: $ x^{2} + 131 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 41 a + 70 + \left(43 a + 31\right)\cdot 137 + \left(73 a + 12\right)\cdot 137^{2} + \left(136 a + 9\right)\cdot 137^{3} + \left(94 a + 98\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 116 a + 57 + \left(90 a + 11\right)\cdot 137 + \left(14 a + 57\right)\cdot 137^{2} + \left(99 a + 99\right)\cdot 137^{3} + \left(66 a + 19\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 102 a + 55 + \left(101 a + 132\right)\cdot 137 + \left(21 a + 61\right)\cdot 137^{2} + \left(60 a + 86\right)\cdot 137^{3} + \left(44 a + 96\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 35 a + 119 + \left(35 a + 92\right)\cdot 137 + \left(115 a + 90\right)\cdot 137^{2} + \left(76 a + 14\right)\cdot 137^{3} + \left(92 a + 29\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 96 a + 42 + \left(93 a + 113\right)\cdot 137 + \left(63 a + 134\right)\cdot 137^{2} + 69\cdot 137^{3} + \left(42 a + 120\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 21 a + 68 + \left(46 a + 29\right)\cdot 137 + \left(122 a + 54\right)\cdot 137^{2} + \left(37 a + 131\right)\cdot 137^{3} + \left(70 a + 46\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $5$ |
| $15$ | $2$ | $(1,2)(3,4)(5,6)$ | $1$ |
| $15$ | $2$ | $(1,2)$ | $-3$ |
| $45$ | $2$ | $(1,2)(3,4)$ | $1$ |
| $40$ | $3$ | $(1,2,3)(4,5,6)$ | $-1$ |
| $40$ | $3$ | $(1,2,3)$ | $2$ |
| $90$ | $4$ | $(1,2,3,4)(5,6)$ | $-1$ |
| $90$ | $4$ | $(1,2,3,4)$ | $-1$ |
| $144$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $120$ | $6$ | $(1,2,3,4,5,6)$ | $1$ |
| $120$ | $6$ | $(1,2,3)(4,5)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.