Properties

Label 5.2e6_3e4_11e4.10t13.2
Dimension 5
Group $\PGL(2,5)$
Conductor $ 2^{6} \cdot 3^{4} \cdot 11^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$\PGL(2,5)$
Conductor:$75898944= 2^{6} \cdot 3^{4} \cdot 11^{4} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - x^{4} + 4 x^{3} - 4 x^{2} + 4 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 101 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 101 }$: $ x^{2} + 97 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 58 a + 85 + \left(40 a + 39\right)\cdot 101 + \left(84 a + 56\right)\cdot 101^{2} + \left(53 a + 56\right)\cdot 101^{3} + \left(85 a + 85\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 + 62\cdot 101 + 24\cdot 101^{2} + 85\cdot 101^{3} + 44\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 43 a + 14 + \left(60 a + 43\right)\cdot 101 + \left(16 a + 50\right)\cdot 101^{2} + \left(47 a + 86\right)\cdot 101^{3} + \left(15 a + 70\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 18 + 35\cdot 101 + 30\cdot 101^{2} + 57\cdot 101^{3} + 22\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 67 a + 54 + \left(95 a + 4\right)\cdot 101 + \left(18 a + 30\right)\cdot 101^{2} + \left(40 a + 89\right)\cdot 101^{3} + \left(51 a + 57\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 34 a + 19 + \left(5 a + 17\right)\cdot 101 + \left(82 a + 10\right)\cdot 101^{2} + \left(60 a + 29\right)\cdot 101^{3} + \left(49 a + 21\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,5,6,4,2)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,2)(3,6)(4,5)$ $1$
$15$ $2$ $(1,2)(3,5)$ $1$
$20$ $3$ $(1,5,4)(2,3,6)$ $-1$
$30$ $4$ $(1,3,2,5)$ $-1$
$24$ $5$ $(1,4,3,5,6)$ $0$
$20$ $6$ $(1,3,5,6,4,2)$ $1$
The blue line marks the conjugacy class containing complex conjugation.