Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 14 a + 27 + \left(35 a + 36\right)\cdot 43 + \left(29 a + 2\right)\cdot 43^{2} + \left(17 a + 11\right)\cdot 43^{3} + \left(10 a + 33\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 10 a + \left(9 a + 26\right)\cdot 43 + \left(39 a + 1\right)\cdot 43^{2} + \left(6 a + 32\right)\cdot 43^{3} + \left(18 a + 29\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 33 a + 10 + \left(33 a + 25\right)\cdot 43 + \left(3 a + 31\right)\cdot 43^{2} + \left(36 a + 42\right)\cdot 43^{3} + \left(24 a + 40\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 29 a + 41 + \left(7 a + 14\right)\cdot 43 + \left(13 a + 40\right)\cdot 43^{2} + \left(25 a + 41\right)\cdot 43^{3} + \left(32 a + 25\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 2 + 18\cdot 43 + 14\cdot 43^{2} + 29\cdot 43^{3} + 22\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 6 + 8\cdot 43 + 38\cdot 43^{2} + 14\cdot 43^{3} + 19\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $5$ |
| $15$ | $2$ | $(1,2)(3,4)(5,6)$ | $3$ |
| $15$ | $2$ | $(1,2)$ | $-1$ |
| $45$ | $2$ | $(1,2)(3,4)$ | $1$ |
| $40$ | $3$ | $(1,2,3)(4,5,6)$ | $2$ |
| $40$ | $3$ | $(1,2,3)$ | $-1$ |
| $90$ | $4$ | $(1,2,3,4)(5,6)$ | $-1$ |
| $90$ | $4$ | $(1,2,3,4)$ | $1$ |
| $144$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $120$ | $6$ | $(1,2,3,4,5,6)$ | $0$ |
| $120$ | $6$ | $(1,2,3)(4,5)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.