Properties

Label 5.2e6_3391e3.6t16.1c1
Dimension 5
Group $S_6$
Conductor $ 2^{6} \cdot 3391^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$2495533150144= 2^{6} \cdot 3391^{3} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{3} - 3 x^{2} + 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_6$
Parity: Odd
Determinant: 1.3391.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 14 a + 27 + \left(35 a + 36\right)\cdot 43 + \left(29 a + 2\right)\cdot 43^{2} + \left(17 a + 11\right)\cdot 43^{3} + \left(10 a + 33\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 a + \left(9 a + 26\right)\cdot 43 + \left(39 a + 1\right)\cdot 43^{2} + \left(6 a + 32\right)\cdot 43^{3} + \left(18 a + 29\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 33 a + 10 + \left(33 a + 25\right)\cdot 43 + \left(3 a + 31\right)\cdot 43^{2} + \left(36 a + 42\right)\cdot 43^{3} + \left(24 a + 40\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 29 a + 41 + \left(7 a + 14\right)\cdot 43 + \left(13 a + 40\right)\cdot 43^{2} + \left(25 a + 41\right)\cdot 43^{3} + \left(32 a + 25\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 2 + 18\cdot 43 + 14\cdot 43^{2} + 29\cdot 43^{3} + 22\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 6 + 8\cdot 43 + 38\cdot 43^{2} + 14\cdot 43^{3} + 19\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$5$
$15$$2$$(1,2)(3,4)(5,6)$$3$
$15$$2$$(1,2)$$-1$
$45$$2$$(1,2)(3,4)$$1$
$40$$3$$(1,2,3)(4,5,6)$$2$
$40$$3$$(1,2,3)$$-1$
$90$$4$$(1,2,3,4)(5,6)$$-1$
$90$$4$$(1,2,3,4)$$1$
$144$$5$$(1,2,3,4,5)$$0$
$120$$6$$(1,2,3,4,5,6)$$0$
$120$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.