Properties

Label 5.2e6_313e2.6t12.2
Dimension 5
Group $A_5$
Conductor $ 2^{6} \cdot 313^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$A_5$
Conductor:$6270016= 2^{6} \cdot 313^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + 2 x^{3} + 4 x^{2} - 18 x + 32 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,5)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 443 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 52 + 114\cdot 443 + 237\cdot 443^{2} + 182\cdot 443^{3} + 316\cdot 443^{4} +O\left(443^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 123 + 169\cdot 443 + 115\cdot 443^{2} + 312\cdot 443^{3} + 425\cdot 443^{4} +O\left(443^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 180 + 331\cdot 443 + 321\cdot 443^{2} + 174\cdot 443^{3} + 391\cdot 443^{4} +O\left(443^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 200 + 294\cdot 443 + 244\cdot 443^{2} + 49\cdot 443^{3} + 96\cdot 443^{4} +O\left(443^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 333 + 419\cdot 443 + 409\cdot 443^{2} + 166\cdot 443^{3} + 99\cdot 443^{4} +O\left(443^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)$ $1$
$20$ $3$ $(1,2,3)$ $-1$
$12$ $5$ $(1,2,3,4,5)$ $0$
$12$ $5$ $(1,3,4,5,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.