Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 15 a + \left(21 a + 11\right)\cdot 37 + \left(4 a + 8\right)\cdot 37^{2} + \left(5 a + 18\right)\cdot 37^{3} + \left(17 a + 1\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 22 a + 23 + \left(15 a + 7\right)\cdot 37 + \left(32 a + 5\right)\cdot 37^{2} + \left(31 a + 34\right)\cdot 37^{3} + \left(19 a + 27\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 34 a + 8 + \left(11 a + 15\right)\cdot 37 + \left(a + 5\right)\cdot 37^{2} + \left(25 a + 35\right)\cdot 37^{3} + \left(28 a + 34\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 11 + 11\cdot 37 + 19\cdot 37^{2} + 33\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 3 a + 33 + \left(25 a + 28\right)\cdot 37 + \left(35 a + 35\right)\cdot 37^{2} + \left(11 a + 22\right)\cdot 37^{3} + \left(8 a + 13\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2,3)$ |
| $(3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $5$ |
| $15$ | $2$ | $(1,2)(3,4)$ | $1$ |
| $20$ | $3$ | $(1,2,3)$ | $-1$ |
| $12$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $12$ | $5$ | $(1,3,4,5,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.