Properties

Label 5.2e6_307e2.6t12.1c1
Dimension 5
Group $A_5$
Conductor $ 2^{6} \cdot 307^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$A_5$
Conductor:$6031936= 2^{6} \cdot 307^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} + 12 x^{3} + 2 x^{2} - 14 x - 10 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,5)$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 547 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 91 + 452\cdot 547 + 370\cdot 547^{2} + 433\cdot 547^{3} + 238\cdot 547^{4} +O\left(547^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 351 + 192\cdot 547 + 518\cdot 547^{2} + 440\cdot 547^{3} + 467\cdot 547^{4} +O\left(547^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 371 + 134\cdot 547 + 412\cdot 547^{2} + 141\cdot 547^{3} + 402\cdot 547^{4} +O\left(547^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 400 + 62\cdot 547 + 211\cdot 547^{2} + 524\cdot 547^{3} + 435\cdot 547^{4} +O\left(547^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 429 + 251\cdot 547 + 128\cdot 547^{2} + 100\cdot 547^{3} + 96\cdot 547^{4} +O\left(547^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$12$$5$$(1,2,3,4,5)$$0$
$12$$5$$(1,3,4,5,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.