Properties

Label 5.2e6_29e4.6t12.1
Dimension 5
Group $A_5$
Conductor $ 2^{6} \cdot 29^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$A_5$
Conductor:$45265984= 2^{6} \cdot 29^{4} $
Artin number field: Splitting field of $f= x^{5} - x^{4} + 12 x^{3} - 14 x^{2} + 42 x - 62 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,5)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 8 a + 3 + \left(14 a + 6\right)\cdot 17 + \left(12 a + 10\right)\cdot 17^{2} + \left(8 a + 8\right)\cdot 17^{3} + \left(7 a + 6\right)\cdot 17^{4} + \left(12 a + 5\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 9 + 14\cdot 17 + 7\cdot 17^{2} + 15\cdot 17^{3} + 10\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 11 + \left(2 a + 12\right)\cdot 17 + \left(4 a + 8\right)\cdot 17^{2} + \left(8 a + 4\right)\cdot 17^{3} + \left(9 a + 5\right)\cdot 17^{4} + \left(4 a + 10\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 3 a + 13 + \left(a + 9\right)\cdot 17 + 7 a\cdot 17^{2} + \left(a + 14\right)\cdot 17^{3} + \left(10 a + 14\right)\cdot 17^{4} + \left(12 a + 2\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 14 a + 16 + \left(15 a + 7\right)\cdot 17 + \left(9 a + 6\right)\cdot 17^{2} + \left(15 a + 8\right)\cdot 17^{3} + \left(6 a + 6\right)\cdot 17^{4} + \left(4 a + 5\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)$ $1$
$20$ $3$ $(1,2,3)$ $-1$
$12$ $5$ $(1,2,3,4,5)$ $0$
$12$ $5$ $(1,3,4,5,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.