Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 26 a + 1 + 9 a\cdot 41 + \left(6 a + 26\right)\cdot 41^{2} + 16 a\cdot 41^{3} + \left(4 a + 35\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 25 + 5\cdot 41 + 18\cdot 41^{2} + 30\cdot 41^{3} + 23\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 12 a + 32 + \left(21 a + 10\right)\cdot 41 + \left(32 a + 4\right)\cdot 41^{2} + \left(38 a + 3\right)\cdot 41^{3} + \left(31 a + 8\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 15 a + 38 + \left(31 a + 2\right)\cdot 41 + \left(34 a + 35\right)\cdot 41^{2} + \left(24 a + 1\right)\cdot 41^{3} + \left(36 a + 32\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 29 a + 27 + \left(19 a + 21\right)\cdot 41 + \left(8 a + 39\right)\cdot 41^{2} + \left(2 a + 4\right)\cdot 41^{3} + \left(9 a + 24\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$5$ |
| $10$ |
$2$ |
$(1,2)$ |
$1$ |
| $15$ |
$2$ |
$(1,2)(3,4)$ |
$1$ |
| $20$ |
$3$ |
$(1,2,3)$ |
$-1$ |
| $30$ |
$4$ |
$(1,2,3,4)$ |
$-1$ |
| $24$ |
$5$ |
$(1,2,3,4,5)$ |
$0$ |
| $20$ |
$6$ |
$(1,2,3)(4,5)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.