Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 109 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 109 }$: $ x^{2} + 108 x + 6 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 29 a + 41 + \left(10 a + 26\right)\cdot 109 + \left(96 a + 10\right)\cdot 109^{2} + \left(60 a + 6\right)\cdot 109^{3} + \left(81 a + 90\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 34 a + 69 + \left(25 a + 10\right)\cdot 109 + \left(98 a + 48\right)\cdot 109^{2} + \left(21 a + 83\right)\cdot 109^{3} + \left(20 a + 27\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 96 a + 29 + \left(92 a + 87\right)\cdot 109 + \left(63 a + 94\right)\cdot 109^{2} + \left(32 a + 90\right)\cdot 109^{3} + \left(84 a + 64\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 75 a + 103 + \left(83 a + 1\right)\cdot 109 + \left(10 a + 12\right)\cdot 109^{2} + \left(87 a + 7\right)\cdot 109^{3} + \left(88 a + 26\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 13 a + 16 + \left(16 a + 84\right)\cdot 109 + \left(45 a + 65\right)\cdot 109^{2} + \left(76 a + 59\right)\cdot 109^{3} + \left(24 a + 7\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 80 a + 70 + \left(98 a + 7\right)\cdot 109 + \left(12 a + 96\right)\cdot 109^{2} + \left(48 a + 79\right)\cdot 109^{3} + \left(27 a + 1\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$5$ |
| $15$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$-3$ |
| $15$ |
$2$ |
$(1,2)$ |
$1$ |
| $45$ |
$2$ |
$(1,2)(3,4)$ |
$1$ |
| $40$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$2$ |
| $40$ |
$3$ |
$(1,2,3)$ |
$-1$ |
| $90$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$-1$ |
| $90$ |
$4$ |
$(1,2,3,4)$ |
$-1$ |
| $144$ |
$5$ |
$(1,2,3,4,5)$ |
$0$ |
| $120$ |
$6$ |
$(1,2,3,4,5,6)$ |
$0$ |
| $120$ |
$6$ |
$(1,2,3)(4,5)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.