Properties

Label 5.2e4_83e3.6t14.1c1
Dimension 5
Group $S_5$
Conductor $ 2^{4} \cdot 83^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$9148592= 2^{4} \cdot 83^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 8 x^{3} - 10 x^{2} + 11 x + 17 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Odd
Determinant: 1.83.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 563 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 179 + 18\cdot 563 + 551\cdot 563^{2} + 304\cdot 563^{3} + 453\cdot 563^{4} +O\left(563^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 326 + 84\cdot 563 + 490\cdot 563^{2} + 130\cdot 563^{3} + 130\cdot 563^{4} +O\left(563^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 334 + 291\cdot 563 + 49\cdot 563^{2} + 237\cdot 563^{3} + 54\cdot 563^{4} +O\left(563^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 422 + 138\cdot 563 + 177\cdot 563^{2} + 436\cdot 563^{3} + 317\cdot 563^{4} +O\left(563^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 429 + 29\cdot 563 + 421\cdot 563^{2} + 16\cdot 563^{3} + 170\cdot 563^{4} +O\left(563^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)$$-1$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$30$$4$$(1,2,3,4)$$1$
$24$$5$$(1,2,3,4,5)$$0$
$20$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.