Properties

Label 5.2e4_7e4_41e2.6t12.1c1
Dimension 5
Group $A_5$
Conductor $ 2^{4} \cdot 7^{4} \cdot 41^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$A_5$
Conductor:$64577296= 2^{4} \cdot 7^{4} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} - 5 x^{3} + 2 x^{2} + 4 x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,5)$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 17 + \left(17 a + 29\right)\cdot 37 + \left(28 a + 23\right)\cdot 37^{2} + \left(34 a + 7\right)\cdot 37^{3} + \left(3 a + 15\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 a + 1 + \left(36 a + 18\right)\cdot 37 + \left(9 a + 32\right)\cdot 37^{2} + \left(24 a + 21\right)\cdot 37^{3} + \left(3 a + 28\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 24 a + 16 + 2\cdot 37 + \left(27 a + 36\right)\cdot 37^{2} + \left(12 a + 34\right)\cdot 37^{3} + \left(33 a + 18\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 9 + 4\cdot 37 + 9\cdot 37^{2} + 2\cdot 37^{3} + 15\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 33 a + 33 + \left(19 a + 19\right)\cdot 37 + \left(8 a + 9\right)\cdot 37^{2} + \left(2 a + 7\right)\cdot 37^{3} + \left(33 a + 33\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$12$$5$$(1,2,3,4,5)$$0$
$12$$5$$(1,3,4,5,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.