Properties

Label 5.2e4_5e2_19e4.6t12.1
Dimension 5
Group $A_5$
Conductor $ 2^{4} \cdot 5^{2} \cdot 19^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$A_5$
Conductor:$52128400= 2^{4} \cdot 5^{2} \cdot 19^{4} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 11 x^{3} + 6 x^{2} + 64 x - 74 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,5)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 557 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 14 + 251\cdot 557 + 288\cdot 557^{2} + 375\cdot 557^{3} + 218\cdot 557^{4} +O\left(557^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 235 + 435\cdot 557 + 247\cdot 557^{2} + 321\cdot 557^{3} + 239\cdot 557^{4} +O\left(557^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 375 + 224\cdot 557 + 116\cdot 557^{2} + 75\cdot 557^{3} + 92\cdot 557^{4} +O\left(557^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 506 + 262\cdot 557 + 255\cdot 557^{2} + 489\cdot 557^{3} + 304\cdot 557^{4} +O\left(557^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 542 + 496\cdot 557 + 205\cdot 557^{2} + 409\cdot 557^{3} + 258\cdot 557^{4} +O\left(557^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)$ $1$
$20$ $3$ $(1,2,3)$ $-1$
$12$ $5$ $(1,2,3,4,5)$ $0$
$12$ $5$ $(1,3,4,5,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.