Properties

Label 5.2e4_577e2.6t12.1c1
Dimension 5
Group $A_5$
Conductor $ 2^{4} \cdot 577^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$A_5$
Conductor:$5326864= 2^{4} \cdot 577^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + 9 x^{3} - 9 x^{2} + 30 x - 19 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,5)$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 8 a + 8 + \left(13 a + 6\right)\cdot 17 + \left(8 a + 5\right)\cdot 17^{2} + 2 a\cdot 17^{3} + \left(12 a + 12\right)\cdot 17^{4} + \left(9 a + 12\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 8 a + 5 + \left(a + 5\right)\cdot 17 + \left(13 a + 12\right)\cdot 17^{2} + \left(6 a + 5\right)\cdot 17^{3} + \left(16 a + 10\right)\cdot 17^{4} + a\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 16 + \left(3 a + 11\right)\cdot 17 + 8 a\cdot 17^{2} + \left(14 a + 11\right)\cdot 17^{3} + \left(4 a + 4\right)\cdot 17^{4} + \left(7 a + 10\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 11 + 11\cdot 17 + 8\cdot 17^{2} + 4\cdot 17^{4} + 7\cdot 17^{5} +O\left(17^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 9 a + 13 + \left(15 a + 15\right)\cdot 17 + \left(3 a + 6\right)\cdot 17^{2} + \left(10 a + 16\right)\cdot 17^{3} + 2\cdot 17^{4} + \left(15 a + 3\right)\cdot 17^{5} +O\left(17^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$12$$5$$(1,2,3,4,5)$$0$
$12$$5$$(1,3,4,5,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.