Properties

Label 5.2e4_3e4_71e2.10t13.2
Dimension 5
Group $S_5$
Conductor $ 2^{4} \cdot 3^{4} \cdot 71^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$6533136= 2^{4} \cdot 3^{4} \cdot 71^{2} $
Artin number field: Splitting field of $f= x^{5} - 10 x^{3} - 2 x^{2} + 24 x + 14 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 157 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 157 }$: $ x^{2} + 152 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 124 a + 100 + \left(134 a + 114\right)\cdot 157 + \left(88 a + 120\right)\cdot 157^{2} + \left(82 a + 7\right)\cdot 157^{3} + \left(88 a + 141\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 149 a + 98 + \left(155 a + 110\right)\cdot 157 + \left(143 a + 56\right)\cdot 157^{2} + \left(41 a + 78\right)\cdot 157^{3} + \left(80 a + 109\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 8 a + 58 + \left(a + 113\right)\cdot 157 + \left(13 a + 149\right)\cdot 157^{2} + \left(115 a + 143\right)\cdot 157^{3} + \left(76 a + 154\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 123 + 95\cdot 157 + 27\cdot 157^{2} + 66\cdot 157^{3} + 35\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 33 a + 92 + \left(22 a + 36\right)\cdot 157 + \left(68 a + 116\right)\cdot 157^{2} + \left(74 a + 17\right)\cdot 157^{3} + \left(68 a + 30\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,2)$ $1$
$15$ $2$ $(1,2)(3,4)$ $1$
$20$ $3$ $(1,2,3)$ $-1$
$30$ $4$ $(1,2,3,4)$ $-1$
$24$ $5$ $(1,2,3,4,5)$ $0$
$20$ $6$ $(1,2,3)(4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.