Properties

Label 5.2e4_3e4_23e4.10t13.2
Dimension 5
Group $S_5$
Conductor $ 2^{4} \cdot 3^{4} \cdot 23^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$362673936= 2^{4} \cdot 3^{4} \cdot 23^{4} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 6 x^{3} - 12 x^{2} + 27 x + 45 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 11\cdot 19 + 7\cdot 19^{2} + 8\cdot 19^{3} + 4\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 a + 3 + 8 a\cdot 19 + \left(13 a + 9\right)\cdot 19^{2} + \left(10 a + 9\right)\cdot 19^{3} + \left(6 a + 11\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 11 a + 11 + 10 a\cdot 19 + \left(5 a + 14\right)\cdot 19^{2} + \left(8 a + 6\right)\cdot 19^{3} + \left(12 a + 7\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 17 + 2\cdot 19 + 18\cdot 19^{2} + 5\cdot 19^{3} + 2\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 + 4\cdot 19 + 8\cdot 19^{2} + 7\cdot 19^{3} + 12\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,2)$ $1$
$15$ $2$ $(1,2)(3,4)$ $1$
$20$ $3$ $(1,2,3)$ $-1$
$30$ $4$ $(1,2,3,4)$ $-1$
$24$ $5$ $(1,2,3,4,5)$ $0$
$20$ $6$ $(1,2,3)(4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.