Properties

Label 5.2e4_3e3_5e6.6t14.1
Dimension 5
Group $S_5$
Conductor $ 2^{4} \cdot 3^{3} \cdot 5^{6}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$6750000= 2^{4} \cdot 3^{3} \cdot 5^{6} $
Artin number field: Splitting field of $f= x^{5} - 10 x^{3} - 10 x^{2} + 10 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 367 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 66 + 121\cdot 367 + 254\cdot 367^{2} + 152\cdot 367^{3} + 344\cdot 367^{4} +O\left(367^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 199 + 73\cdot 367 + 237\cdot 367^{2} + 116\cdot 367^{3} + 30\cdot 367^{4} +O\left(367^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 214 + 291\cdot 367 + 276\cdot 367^{2} + 132\cdot 367^{3} + 43\cdot 367^{4} +O\left(367^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 286 + 116\cdot 367 + 75\cdot 367^{2} + 161\cdot 367^{3} + 69\cdot 367^{4} +O\left(367^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 336 + 130\cdot 367 + 257\cdot 367^{2} + 170\cdot 367^{3} + 246\cdot 367^{4} +O\left(367^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,2)$ $-1$
$15$ $2$ $(1,2)(3,4)$ $1$
$20$ $3$ $(1,2,3)$ $-1$
$30$ $4$ $(1,2,3,4)$ $1$
$24$ $5$ $(1,2,3,4,5)$ $0$
$20$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.