Properties

Label 5.2e4_3e3_4663e3.6t14.1
Dimension 5
Group $S_5$
Conductor $ 2^{4} \cdot 3^{3} \cdot 4663^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$43800593290704= 2^{4} \cdot 3^{3} \cdot 4663^{3} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} - 4 x^{3} + 6 x^{2} + 2 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 23 + 48\cdot 67^{2} + 7\cdot 67^{3} + 23\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 + 44\cdot 67 + 27\cdot 67^{2} + 14\cdot 67^{3} + 65\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 20 a + 17 + \left(5 a + 18\right)\cdot 67 + \left(51 a + 63\right)\cdot 67^{2} + \left(18 a + 65\right)\cdot 67^{3} + \left(25 a + 43\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 47 a + 30 + \left(61 a + 19\right)\cdot 67 + \left(15 a + 61\right)\cdot 67^{2} + \left(48 a + 22\right)\cdot 67^{3} + \left(41 a + 59\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 41 + 51\cdot 67 + 23\cdot 67^{3} + 9\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,2)$ $-1$
$15$ $2$ $(1,2)(3,4)$ $1$
$20$ $3$ $(1,2,3)$ $-1$
$30$ $4$ $(1,2,3,4)$ $1$
$24$ $5$ $(1,2,3,4,5)$ $0$
$20$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.