Properties

Label 5.2e4_3e3_23e3.6t14.2
Dimension 5
Group $\PGL(2,5)$
Conductor $ 2^{4} \cdot 3^{3} \cdot 23^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$\PGL(2,5)$
Conductor:$5256144= 2^{4} \cdot 3^{3} \cdot 23^{3} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 2 x^{4} - 2 x^{3} + x^{2} + 5 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 + 42\cdot 53 + 47\cdot 53^{2} + 14\cdot 53^{3} + 2\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 33 a + 43 + \left(44 a + 9\right)\cdot 53 + \left(37 a + 9\right)\cdot 53^{2} + \left(8 a + 16\right)\cdot 53^{3} + \left(30 a + 39\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 44 + 45\cdot 53 + 12\cdot 53^{2} + 19\cdot 53^{3} + 10\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 50 a + 4 + \left(36 a + 10\right)\cdot 53 + \left(40 a + 3\right)\cdot 53^{2} + \left(26 a + 41\right)\cdot 53^{3} + \left(13 a + 43\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 3 a + 45 + \left(16 a + 1\right)\cdot 53 + \left(12 a + 23\right)\cdot 53^{2} + \left(26 a + 1\right)\cdot 53^{3} + \left(39 a + 18\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 20 a + 16 + \left(8 a + 49\right)\cdot 53 + \left(15 a + 9\right)\cdot 53^{2} + \left(44 a + 13\right)\cdot 53^{3} + \left(22 a + 45\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3,4,6,5)$
$(1,3)(2,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,3)(2,4)(5,6)$ $-1$
$15$ $2$ $(1,5)(4,6)$ $1$
$20$ $3$ $(1,3,6)(2,4,5)$ $-1$
$30$ $4$ $(1,6,5,4)$ $1$
$24$ $5$ $(1,4,3,2,6)$ $0$
$20$ $6$ $(1,2,3,4,6,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.