Properties

Label 5.2e4_3e3_149e2.6t14.1c1
Dimension 5
Group $S_5$
Conductor $ 2^{4} \cdot 3^{3} \cdot 149^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$9590832= 2^{4} \cdot 3^{3} \cdot 149^{2} $
Artin number field: Splitting field of $f= x^{5} - 4 x^{3} - 12 x^{2} - 8 x + 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 2 a + 18 + \left(18 a + 5\right)\cdot 23 + \left(14 a + 3\right)\cdot 23^{2} + \left(10 a + 6\right)\cdot 23^{3} + \left(21 a + 17\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 21 a + 22 + \left(4 a + 16\right)\cdot 23 + \left(8 a + 14\right)\cdot 23^{2} + \left(12 a + 12\right)\cdot 23^{3} + \left(a + 3\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 4 + 14\cdot 23 + 17\cdot 23^{2} + 12\cdot 23^{3} + 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 19 + 20\cdot 23 + 11\cdot 23^{2} + 14\cdot 23^{3} + 5\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 + 11\cdot 23 + 21\cdot 23^{2} + 22\cdot 23^{3} + 17\cdot 23^{4} +O\left(23^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)$$-1$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$30$$4$$(1,2,3,4)$$1$
$24$$5$$(1,2,3,4,5)$$0$
$20$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.