Properties

Label 5.2e4_3e2_179e2.10t13.2
Dimension 5
Group $\PGL(2,5)$
Conductor $ 2^{4} \cdot 3^{2} \cdot 179^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$\PGL(2,5)$
Conductor:$4613904= 2^{4} \cdot 3^{2} \cdot 179^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 8 x^{4} - 12 x^{3} + 12 x^{2} - 10 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 a + 6 + \left(16 a + 10\right)\cdot 19 + \left(17 a + 5\right)\cdot 19^{2} + \left(13 a + 10\right)\cdot 19^{3} + 6 a\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 6 + \left(4 a + 11\right)\cdot 19 + \left(7 a + 4\right)\cdot 19^{2} + \left(8 a + 12\right)\cdot 19^{3} + \left(3 a + 8\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 15 + 11\cdot 19 + 17\cdot 19^{2} + 14\cdot 19^{3} + 18\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 14 + \left(2 a + 18\right)\cdot 19 + \left(a + 6\right)\cdot 19^{2} + \left(5 a + 6\right)\cdot 19^{3} + \left(12 a + 12\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 12 a + 13 + \left(14 a + 8\right)\cdot 19 + \left(11 a + 7\right)\cdot 19^{2} + \left(10 a + 13\right)\cdot 19^{3} + \left(15 a + 3\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 5 + 15\cdot 19 + 14\cdot 19^{2} + 18\cdot 19^{3} + 12\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3,4,6,5)$
$(1,3)(2,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$10$ $2$ $(1,3)(2,4)(5,6)$ $1$
$15$ $2$ $(1,5)(4,6)$ $1$
$20$ $3$ $(1,3,6)(2,4,5)$ $-1$
$30$ $4$ $(1,6,5,4)$ $-1$
$24$ $5$ $(1,4,3,2,6)$ $0$
$20$ $6$ $(1,2,3,4,6,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.