Properties

Label 5.2e4_3e10_5e4.12t183.1c1
Dimension 5
Group $S_6$
Conductor $ 2^{4} \cdot 3^{10} \cdot 5^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$590490000= 2^{4} \cdot 3^{10} \cdot 5^{4} $
Artin number field: Splitting field of $f= x^{6} + 3 x^{4} - 8 x^{3} - 9 x^{2} - 12 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T183
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 149 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 149 }$: $ x^{2} + 145 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 36 + 18\cdot 149 + 97\cdot 149^{2} + 144\cdot 149^{3} + 81\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 76 a + 41 + \left(91 a + 129\right)\cdot 149 + \left(85 a + 25\right)\cdot 149^{2} + \left(16 a + 99\right)\cdot 149^{3} + \left(39 a + 45\right)\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 118 a + 71 + \left(142 a + 34\right)\cdot 149 + \left(126 a + 106\right)\cdot 149^{2} + \left(132 a + 115\right)\cdot 149^{3} + \left(18 a + 32\right)\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 73 a + 47 + \left(57 a + 121\right)\cdot 149 + \left(63 a + 127\right)\cdot 149^{2} + \left(132 a + 79\right)\cdot 149^{3} + \left(109 a + 36\right)\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 31 a + 96 + \left(6 a + 40\right)\cdot 149 + \left(22 a + 24\right)\cdot 149^{2} + \left(16 a + 73\right)\cdot 149^{3} + \left(130 a + 124\right)\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 7 + 103\cdot 149 + 65\cdot 149^{2} + 83\cdot 149^{3} + 125\cdot 149^{4} +O\left(149^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$5$
$15$$2$$(1,2)(3,4)(5,6)$$-3$
$15$$2$$(1,2)$$1$
$45$$2$$(1,2)(3,4)$$1$
$40$$3$$(1,2,3)(4,5,6)$$2$
$40$$3$$(1,2,3)$$-1$
$90$$4$$(1,2,3,4)(5,6)$$-1$
$90$$4$$(1,2,3,4)$$-1$
$144$$5$$(1,2,3,4,5)$$0$
$120$$6$$(1,2,3,4,5,6)$$0$
$120$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.