Properties

Label 5.2e4_353e2.6t12.1c1
Dimension 5
Group $A_5$
Conductor $ 2^{4} \cdot 353^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$A_5$
Conductor:$1993744= 2^{4} \cdot 353^{2} $
Artin number field: Splitting field of $f= x^{5} + x^{3} - 5 x^{2} - 4 x - 7 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,5)$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 241 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 118\cdot 241 + 117\cdot 241^{2} + 122\cdot 241^{3} + 121\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 + 36\cdot 241 + 87\cdot 241^{2} + 225\cdot 241^{3} + 196\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 139 + 146\cdot 241 + 17\cdot 241^{2} + 224\cdot 241^{3} + 23\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 154 + 71\cdot 241 + 21\cdot 241^{2} + 205\cdot 241^{3} + 198\cdot 241^{4} +O\left(241^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 169 + 109\cdot 241 + 238\cdot 241^{2} + 186\cdot 241^{3} + 181\cdot 241^{4} +O\left(241^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$12$$5$$(1,2,3,4,5)$$0$
$12$$5$$(1,3,4,5,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.