Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 149 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 149 }$: $ x^{2} + 145 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 64 + 134\cdot 149 + 21\cdot 149^{2} + 46\cdot 149^{3} + 69\cdot 149^{4} +O\left(149^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 65 + 122\cdot 149 + 70\cdot 149^{2} + 106\cdot 149^{3} + 23\cdot 149^{4} +O\left(149^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 95 a + 31 + \left(51 a + 53\right)\cdot 149 + \left(27 a + 47\right)\cdot 149^{2} + \left(102 a + 24\right)\cdot 149^{3} + \left(115 a + 42\right)\cdot 149^{4} +O\left(149^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 15 + 47\cdot 149 + 45\cdot 149^{2} + 43\cdot 149^{3} + 107\cdot 149^{4} +O\left(149^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 54 a + 113 + \left(97 a + 15\right)\cdot 149 + \left(121 a + 105\right)\cdot 149^{2} + \left(46 a + 107\right)\cdot 149^{3} + \left(33 a + 104\right)\cdot 149^{4} +O\left(149^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 11 + 74\cdot 149 + 7\cdot 149^{2} + 119\cdot 149^{3} + 99\cdot 149^{4} +O\left(149^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$5$ |
| $15$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$1$ |
| $15$ |
$2$ |
$(1,2)$ |
$-3$ |
| $45$ |
$2$ |
$(1,2)(3,4)$ |
$1$ |
| $40$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$-1$ |
| $40$ |
$3$ |
$(1,2,3)$ |
$2$ |
| $90$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$-1$ |
| $90$ |
$4$ |
$(1,2,3,4)$ |
$-1$ |
| $144$ |
$5$ |
$(1,2,3,4,5)$ |
$0$ |
| $120$ |
$6$ |
$(1,2,3,4,5,6)$ |
$1$ |
| $120$ |
$6$ |
$(1,2,3)(4,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.