Properties

Label 5.2e4_33769e3.6t14.1c1
Dimension 5
Group $S_5$
Conductor $ 2^{4} \cdot 33769^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$616133159929744= 2^{4} \cdot 33769^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 5 x^{3} + 4 x^{2} + 4 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Even
Determinant: 1.33769.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ a + \left(20 a + 6\right)\cdot 31 + \left(6 a + 28\right)\cdot 31^{2} + 23\cdot 31^{3} + \left(19 a + 8\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 30 a + 2 + \left(10 a + 14\right)\cdot 31 + \left(24 a + 21\right)\cdot 31^{2} + \left(30 a + 17\right)\cdot 31^{3} + \left(11 a + 15\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 25 + 2\cdot 31 + 26\cdot 31^{2} + 5\cdot 31^{3} + 9\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 25 a + 24 + \left(4 a + 11\right)\cdot 31 + \left(7 a + 19\right)\cdot 31^{2} + \left(30 a + 11\right)\cdot 31^{3} + \left(15 a + 13\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 a + 12 + \left(26 a + 27\right)\cdot 31 + \left(23 a + 28\right)\cdot 31^{2} + 2\cdot 31^{3} + \left(15 a + 15\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)$$-1$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$30$$4$$(1,2,3,4)$$1$
$24$$5$$(1,2,3,4,5)$$0$
$20$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.