Properties

Label 5.2e4_23e3_563e3.6t14.1c1
Dimension 5
Group $S_5$
Conductor $ 2^{4} \cdot 23^{3} \cdot 563^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$34739908901584= 2^{4} \cdot 23^{3} \cdot 563^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 6 x^{3} + 2 x^{2} + 7 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Even
Determinant: 1.23_563.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 283 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 13 + 163\cdot 283 + 163\cdot 283^{2} + 114\cdot 283^{3} + 118\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 16 + 43\cdot 283 + 34\cdot 283^{2} + 11\cdot 283^{3} + 28\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 57 + 189\cdot 283 + 126\cdot 283^{2} + 169\cdot 283^{3} + 185\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 234 + 201\cdot 283 + 246\cdot 283^{2} + 142\cdot 283^{3} + 31\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 247 + 251\cdot 283 + 277\cdot 283^{2} + 127\cdot 283^{3} + 202\cdot 283^{4} +O\left(283^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)$$-1$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$30$$4$$(1,2,3,4)$$1$
$24$$5$$(1,2,3,4,5)$$0$
$20$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.