Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 283 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 13 + 163\cdot 283 + 163\cdot 283^{2} + 114\cdot 283^{3} + 118\cdot 283^{4} +O\left(283^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 16 + 43\cdot 283 + 34\cdot 283^{2} + 11\cdot 283^{3} + 28\cdot 283^{4} +O\left(283^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 57 + 189\cdot 283 + 126\cdot 283^{2} + 169\cdot 283^{3} + 185\cdot 283^{4} +O\left(283^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 234 + 201\cdot 283 + 246\cdot 283^{2} + 142\cdot 283^{3} + 31\cdot 283^{4} +O\left(283^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 247 + 251\cdot 283 + 277\cdot 283^{2} + 127\cdot 283^{3} + 202\cdot 283^{4} +O\left(283^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $5$ |
| $10$ | $2$ | $(1,2)$ | $1$ |
| $15$ | $2$ | $(1,2)(3,4)$ | $1$ |
| $20$ | $3$ | $(1,2,3)$ | $-1$ |
| $30$ | $4$ | $(1,2,3,4)$ | $-1$ |
| $24$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $20$ | $6$ | $(1,2,3)(4,5)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.