Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 311 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 103 + 309\cdot 311 + 174\cdot 311^{2} + 194\cdot 311^{3} + 9\cdot 311^{4} +O\left(311^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 134 + 140\cdot 311 + 113\cdot 311^{2} + 174\cdot 311^{3} + 176\cdot 311^{4} +O\left(311^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 155 + 198\cdot 311 + 201\cdot 311^{2} + 265\cdot 311^{3} + 4\cdot 311^{4} +O\left(311^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 255 + 185\cdot 311 + 282\cdot 311^{2} + 94\cdot 311^{3} + 219\cdot 311^{4} +O\left(311^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 287 + 98\cdot 311 + 160\cdot 311^{2} + 203\cdot 311^{3} + 211\cdot 311^{4} +O\left(311^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2,3)$ |
| $(3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $5$ |
| $15$ | $2$ | $(1,2)(3,4)$ | $1$ |
| $20$ | $3$ | $(1,2,3)$ | $-1$ |
| $12$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $12$ | $5$ | $(1,3,4,5,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.