Properties

Label 5.2e4_11e4_31e2.6t12.1c1
Dimension 5
Group $A_5$
Conductor $ 2^{4} \cdot 11^{4} \cdot 31^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$A_5$
Conductor:$225120016= 2^{4} \cdot 11^{4} \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} + 5 x^{3} + 2 x^{2} - 10 x - 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PSL(2,5)$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 9 a + 9 + \left(38 a + 13\right)\cdot 41 + \left(31 a + 18\right)\cdot 41^{2} + \left(13 a + 16\right)\cdot 41^{3} + \left(25 a + 1\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 a + 33 + \left(8 a + 2\right)\cdot 41 + \left(26 a + 12\right)\cdot 41^{2} + \left(40 a + 35\right)\cdot 41^{3} + \left(37 a + 22\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 27 a + 34 + \left(32 a + 13\right)\cdot 41 + 14 a\cdot 41^{2} + 8\cdot 41^{3} + \left(3 a + 14\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 32 a + 36 + \left(2 a + 36\right)\cdot 41 + \left(9 a + 34\right)\cdot 41^{2} + \left(27 a + 25\right)\cdot 41^{3} + \left(15 a + 22\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 12 + 15\cdot 41 + 16\cdot 41^{2} + 37\cdot 41^{3} + 20\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$12$$5$$(1,2,3,4,5)$$0$
$12$$5$$(1,3,4,5,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.