Properties

Label 5.2e4_11e3_17e2.6t14.2c1
Dimension 5
Group $\PGL(2,5)$
Conductor $ 2^{4} \cdot 11^{3} \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$\PGL(2,5)$
Conductor:$6154544= 2^{4} \cdot 11^{3} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 5 x^{4} - 2 x^{3} + 6 x^{2} + 12 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Odd
Determinant: 1.11.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 24 a + 9 + \left(26 a + 1\right)\cdot 37 + \left(19 a + 33\right)\cdot 37^{2} + \left(22 a + 27\right)\cdot 37^{3} + \left(6 a + 27\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 a + 31 + \left(10 a + 9\right)\cdot 37 + \left(17 a + 11\right)\cdot 37^{2} + \left(14 a + 24\right)\cdot 37^{3} + \left(30 a + 31\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 32 a + 19 + \left(24 a + 23\right)\cdot 37 + 15\cdot 37^{2} + \left(23 a + 3\right)\cdot 37^{3} + \left(13 a + 35\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 6 + 31\cdot 37 + 33\cdot 37^{2} + 14\cdot 37^{3} + 34\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 12 + 28\cdot 37 + 23\cdot 37^{2} + 19\cdot 37^{3} + 26\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 5 a + 36 + \left(12 a + 16\right)\cdot 37 + \left(36 a + 30\right)\cdot 37^{2} + \left(13 a + 20\right)\cdot 37^{3} + \left(23 a + 29\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)(2,3)(4,5)$
$(1,6,2,4,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,6)(2,3)(4,5)$$-1$
$15$$2$$(1,5)(2,6)$$1$
$20$$3$$(1,2,3)(4,5,6)$$-1$
$30$$4$$(1,6,5,2)$$1$
$24$$5$$(1,2,5,3,4)$$0$
$20$$6$$(1,6,2,4,3,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.