Properties

Label 5.2e4_1051e3.6t14.1c1
Dimension 5
Group $S_5$
Conductor $ 2^{4} \cdot 1051^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_5$
Conductor:$18574970416= 2^{4} \cdot 1051^{3} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{3} - 2 x^{2} - 4 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\PGL(2,5)$
Parity: Odd
Determinant: 1.1051.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 541 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 72 + 518\cdot 541 + 520\cdot 541^{2} + 441\cdot 541^{3} + 281\cdot 541^{4} +O\left(541^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 87 + 63\cdot 541 + 166\cdot 541^{2} + 541^{3} + 35\cdot 541^{4} +O\left(541^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 246 + 91\cdot 541 + 97\cdot 541^{2} + 177\cdot 541^{3} + 148\cdot 541^{4} +O\left(541^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 284 + 379\cdot 541 + 21\cdot 541^{2} + 301\cdot 541^{3} + 189\cdot 541^{4} +O\left(541^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 393 + 29\cdot 541 + 276\cdot 541^{2} + 160\cdot 541^{3} + 427\cdot 541^{4} +O\left(541^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)$$-1$
$15$$2$$(1,2)(3,4)$$1$
$20$$3$$(1,2,3)$$-1$
$30$$4$$(1,2,3,4)$$1$
$24$$5$$(1,2,3,4,5)$$0$
$20$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.