Properties

Label 5.2e2_3e6_5e5.6t16.2c1
Dimension 5
Group $S_6$
Conductor $ 2^{2} \cdot 3^{6} \cdot 5^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$9112500= 2^{2} \cdot 3^{6} \cdot 5^{5} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 5 x^{3} + 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_6$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 157 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 157 }$: $ x^{2} + 152 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 87 a + 38 + \left(143 a + 25\right)\cdot 157 + \left(42 a + 98\right)\cdot 157^{2} + \left(112 a + 11\right)\cdot 157^{3} + \left(112 a + 73\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 70 a + 2 + \left(13 a + 28\right)\cdot 157 + \left(114 a + 12\right)\cdot 157^{2} + \left(44 a + 59\right)\cdot 157^{3} + \left(44 a + 53\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 143 a + 72 + \left(81 a + 47\right)\cdot 157 + \left(24 a + 71\right)\cdot 157^{2} + \left(88 a + 16\right)\cdot 157^{3} + \left(3 a + 131\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 14 a + 2 + 75 a\cdot 157 + \left(132 a + 112\right)\cdot 157^{2} + \left(68 a + 118\right)\cdot 157^{3} + \left(153 a + 60\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 36 a + 90 + \left(29 a + 51\right)\cdot 157 + \left(21 a + 50\right)\cdot 157^{2} + \left(49 a + 20\right)\cdot 157^{3} + \left(136 a + 74\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 121 a + 113 + \left(127 a + 4\right)\cdot 157 + \left(135 a + 127\right)\cdot 157^{2} + \left(107 a + 87\right)\cdot 157^{3} + \left(20 a + 78\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$5$
$15$$2$$(1,2)(3,4)(5,6)$$3$
$15$$2$$(1,2)$$-1$
$45$$2$$(1,2)(3,4)$$1$
$40$$3$$(1,2,3)(4,5,6)$$2$
$40$$3$$(1,2,3)$$-1$
$90$$4$$(1,2,3,4)(5,6)$$-1$
$90$$4$$(1,2,3,4)$$1$
$144$$5$$(1,2,3,4,5)$$0$
$120$$6$$(1,2,3,4,5,6)$$0$
$120$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.