Properties

Label 5.2e2_3e6_5e5.6t16.1
Dimension 5
Group $S_6$
Conductor $ 2^{2} \cdot 3^{6} \cdot 5^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$S_6$
Conductor:$9112500= 2^{2} \cdot 3^{6} \cdot 5^{5} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 5 x^{3} - 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_6$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 157 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 157 }$: $ x^{2} + 152 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 119 + 129\cdot 157 + 27\cdot 157^{2} + 55\cdot 157^{3} + 65\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 137 + 77\cdot 157 + 64\cdot 157^{2} + 115\cdot 157^{3} + 25\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 139 + 29\cdot 157 + 32\cdot 157^{2} + 97\cdot 157^{3} + 6\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 156 a + 20 + \left(84 a + 66\right)\cdot 157 + \left(15 a + 146\right)\cdot 157^{2} + \left(56 a + 142\right)\cdot 157^{3} + \left(55 a + 78\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 5 }$ $=$ $ a + 15 + \left(72 a + 21\right)\cdot 157 + \left(141 a + 139\right)\cdot 157^{2} + \left(100 a + 93\right)\cdot 157^{3} + \left(101 a + 142\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 44 + 146\cdot 157 + 60\cdot 157^{2} + 123\cdot 157^{3} + 151\cdot 157^{4} +O\left(157^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$15$ $2$ $(1,2)(3,4)(5,6)$ $-1$
$15$ $2$ $(1,2)$ $3$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $-1$
$40$ $3$ $(1,2,3)$ $2$
$90$ $4$ $(1,2,3,4)(5,6)$ $-1$
$90$ $4$ $(1,2,3,4)$ $1$
$144$ $5$ $(1,2,3,4,5)$ $0$
$120$ $6$ $(1,2,3,4,5,6)$ $-1$
$120$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.