Properties

Label 5.2e14_3e8.6t15.2
Dimension 5
Group $A_6$
Conductor $ 2^{14} \cdot 3^{8}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$A_6$
Conductor:$107495424= 2^{14} \cdot 3^{8} $
Artin number field: Splitting field of $f= x^{6} + 6 x^{4} - 12 x^{3} + 57 x^{2} - 36 x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_6$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 6 a + 5 + \left(6 a + 25\right)\cdot 47 + \left(22 a + 8\right)\cdot 47^{2} + \left(11 a + 8\right)\cdot 47^{3} + \left(41 a + 40\right)\cdot 47^{4} + \left(23 a + 36\right)\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 38 + 24\cdot 47 + 2\cdot 47^{2} + 5\cdot 47^{3} + 18\cdot 47^{4} + 6\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 41 a + 17 + \left(40 a + 31\right)\cdot 47 + \left(24 a + 46\right)\cdot 47^{2} + \left(35 a + 8\right)\cdot 47^{3} + \left(5 a + 17\right)\cdot 47^{4} + \left(23 a + 43\right)\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 22 + \left(34 a + 14\right)\cdot 47 + \left(17 a + 23\right)\cdot 47^{2} + \left(5 a + 25\right)\cdot 47^{3} + \left(39 a + 4\right)\cdot 47^{4} + \left(35 a + 7\right)\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 33 + 11\cdot 47 + 35\cdot 47^{2} + 27\cdot 47^{3} + 30\cdot 47^{4} + 7\cdot 47^{5} +O\left(47^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 45 a + 26 + \left(12 a + 33\right)\cdot 47 + \left(29 a + 24\right)\cdot 47^{2} + \left(41 a + 18\right)\cdot 47^{3} + \left(7 a + 30\right)\cdot 47^{4} + \left(11 a + 39\right)\cdot 47^{5} +O\left(47^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3)$
$(1,2)(3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $5$
$45$ $2$ $(1,2)(3,4)$ $1$
$40$ $3$ $(1,2,3)(4,5,6)$ $2$
$40$ $3$ $(1,2,3)$ $-1$
$90$ $4$ $(1,2,3,4)(5,6)$ $-1$
$72$ $5$ $(1,2,3,4,5)$ $0$
$72$ $5$ $(1,3,4,5,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.