Properties

Label 5.2e14_11e4.10t13.3c1
Dimension 5
Group $\PGL(2,5)$
Conductor $ 2^{14} \cdot 11^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$5$
Group:$\PGL(2,5)$
Conductor:$239878144= 2^{14} \cdot 11^{4} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - x^{4} + 2 x^{3} - 5 x^{2} - x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 79 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 79 }$: $ x^{2} + 78 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 70 a + 77 + \left(17 a + 58\right)\cdot 79 + \left(31 a + 63\right)\cdot 79^{2} + \left(a + 15\right)\cdot 79^{3} + \left(36 a + 54\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 68 + \left(61 a + 6\right)\cdot 79 + \left(47 a + 77\right)\cdot 79^{2} + \left(77 a + 64\right)\cdot 79^{3} + \left(42 a + 9\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 70 + 52\cdot 79 + 71\cdot 79^{2} + 77\cdot 79^{3} + 49\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 21 a + 49 + \left(29 a + 64\right)\cdot 79 + \left(a + 10\right)\cdot 79^{2} + \left(40 a + 50\right)\cdot 79^{3} + \left(60 a + 66\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 62 + 59\cdot 79 + 30\cdot 79^{2} + 18\cdot 79^{3} + 48\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 58 a + 70 + \left(49 a + 72\right)\cdot 79 + \left(77 a + 61\right)\cdot 79^{2} + \left(38 a + 9\right)\cdot 79^{3} + \left(18 a + 8\right)\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,2,4,5,6)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$5$
$10$$2$$(1,2)(3,6)(4,5)$$1$
$15$$2$$(1,4)(2,5)$$1$
$20$$3$$(1,5,2)(3,6,4)$$-1$
$30$$4$$(2,6,4,5)$$-1$
$24$$5$$(1,4,6,2,3)$$0$
$20$$6$$(1,6,5,4,2,3)$$1$
The blue line marks the conjugacy class containing complex conjugation.